R18 Code No: 156CP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, February - 2023 PRINCIPLES OF COMPILER CONSTRUCTION (Common to IT, ITE)

Time: 3 Hours

Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

		(25 Marks)
1.a)	Define Finite Automata and Regular Expression.	[2]
b)	Convert the following regular expression to DFA: $(a^* b^*)^*$.	[3]
c)	Why do we need LR parsers?	[2]
d)	What are the advantages and disadvantages of predictive parsers?	[3]
e)	Define synthesized attributes and inherited attributes.	[2]
f)	What is a Dependency graph? Give an example.	[3]
g)	What is meant by DAG?	[2]
h)	Write down the algorithm to partition a three-address code into basic blocks.	[3]
i)	Define a flow graph.	[2]
j)	How to compute IN and Ok? statements in data flow analysis?	[3]
	PART – B	(50 Marks)
2.a)	Discuss the top of the Lexical Analyzer.	
b)	How a compiler differs from an assembler and an interpreter? Describe the s	tructure of
	a language processing system with a neat diagram.	[5+5]
	OR	
3.a)	Why analysis portion of a compiler is normally separated into lexical syntax analysis phases?	analysis and
b)	Discuss the problem of recognizing and specifying lexemes in the input.	[4+6]
4.a)	What are the techniques to eliminate ambiguity in the grammar? With the he algorithm and example, explain them.	lp of the
4.a) b)	What are the techniques to eliminate ambiguity in the grammar? With the he algorithm and example, explain them. Write down the differences between top-down parsers and bottom-up parsers	elp of the s. [6+4]

5. Construct SLR parser table for the following grammar by computing item sets: [10] $E \rightarrow E + T \mid T$ $T \rightarrow T * F | F$ $F \rightarrow (E)/id$

Download all NOTES and PAPERS at StudentSuvidha.com

6.	Design an S-attributed SDD for the following grammar that generates binary numbers with a "decimal" point. [10]
	$S \rightarrow L . L \mid L$ $L \rightarrow L B \mid B$ $B \rightarrow 0 \mid 1$
	OR
7.	Discuss briefly about Three-Address code and translate the following arithmetic expression
	a+-(b+c) into :
	a) a syntax tree
	b) quadraples
	c) triples
	d) indirect triples.
8.	What are the important types of local optimizations that can be applied to basic blocks?
	Explain them with a illustrative examples. [10]
	OR
9.a)	Mention the issues in the design of a code generator.
b)	Outline various storage allocation strategies. [5+5]
10.	Explain the purpose of optimization using global data-flow analysis with relevant
	example. [10]
	OR
11.	Explain the following loop optimization techniques with an example:
	a) Code motion
	b) Induction-variable elimination
	c) Strength Reduction. [3+4+3]
	Neu
	1000
	00000
	He. Xe